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Abstract —An improved finite-element method for the analysis of rfielec-

tric waveguiding problems is formulated rising the transverse magnetic-field

component. In this approach, the divergence relation v. H = O is satisfied

and the spurious, nonphysical solutions which have been necessarily in-

cluded in the solntions of earlier vectorial finite-element methods are

completely eliminated in the whole region of a propagation diagram. To

verify the accuracy of the present method, numericaf results for a rectangu-

lar metaflic wavegnide half filled with dielectric are presented and com-

pared with exact and earfier finite-element solutions. Dielectric rectangular

wavegnides are also analyzed for both isotropic and anisotropic cases.

1. INTRODUCTION

s EVERAL METHODS for the analysis of three-

dimensional dielectric waveguides have been pro-

posed, and the vectorial finite-element method in an

axial-component (E= – HZ) formulation [1]–[7] or in a

three-component (magnetic field H or electric field E)

formulation [8]–[10], which enables one to compute accu-

rately the mode spectrum of a waveguide with an arbitrary

cross section, is widely used. The most serious difficulty in

applying the finite-element method to three-dimensional

inhomogeneous dielectric waveguides is the appearance of

spurious, nonphysical solutions [1]–[10]. To overcome this

difficulty, approaches have recently been developed using

all three components of the magnetic or electric field

[11] -[17]. Among them, the penalty function method

[11] -[13], [15] -[17] has been extensively studied and ap-

plied to various types of dielectric waveguides [18] -[23] in

which the divergence-free constraint v oH = O or v. D = O
is satisfied in the least-square sense and the spurious

solutions can be suppressed from the guided- or slow-wave

region [15]–[17]. However, in this approach an arbitrary

positive constant, called the penalty coefficient, is in-

cluded, and the accuracy of solutions depends on its

magnitude [13], [23]. Furthermore, unless one suitably

selects the value of the constant, the spurious solutions

also appear in the guided region [13], [15], [17]. On the

other hand, Hano [14] has developed another vectorial
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finite-element method in terms of all three components of

the electric and/or magnetic fields. In this procedure,

spurious solutions do not appear, but needless zero eigen-

values are produced.

In this paper, a new finite-element method for the

analysis of dielectric waveguide problems is developed in

terms of the transverse magnetic-field component. In this

approach, the relation vs H = O is satisfied and the spuri-

ous solutions are completely eliminated in the whole re-

gion of a propagation diagram. Furthermore, any artificial

parameters such as the penalty coefficient that have been

included in the three-component magnetic-field formula-

tions [13], [15], [17] are not included, and the matrix is

reduced to two-thirds the size of these formulations. To

verify the accuracy of the method, numerical results for a

rectangular metallic waveguide half filled with dielectric

are presented and compared with exact [24] and earlier

finite-element solutions [11]. Dielectric rectangular wave-

guides are also analyzed for both isotropic and anisotropic

cases and the results obtained are compared with previ-

ously published results [25], [26].

II. FUNDAMENTAL EQUATIONS

We consider a three-dimensional dielectric waveguide

with an arbitrary cross section L? in the xy-plane and

assume that r, the boundary of the region Q, consists

partly of a perfect electric conductor and partly of a

perfect magnetic conductor. With a time dependence of

the form exp ( jut ) being implied, from Maxwell’s equa-
tions the following vectorial wave equation is derived:

VX([K]-lVXH)–k@=O (1)

where k. is the free-space wavenumber and [K] is the

relative permittivity tensor.

The divergence-free constraint v. H = O can be written

Hz= (1/j~)( dHX/dx + dHy/~y) (2)

where ~ is the phase constant in the z-direction, assuming

no losses.
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III. FINITE-ELEMENT FORMULATION

Dividing the cross section ~ of the guide into a number

of second-order triangular elements, the magnetic fields

within each element are defined in terms of the magnetic

fields at the corner and midside nodal points

17=[lV]T{~} eexp(-~~z) (3)

where

[

{N} {o} {o}
[N]= {o} {N} {o}

/

(4)

{o} {o} j{iv}

and

[1

{HX}e

{H}e= {%}, . (5)

{Hz}e

Here, {N} is the shape function vector, {O} is a null

vector, T, {. }, and {.} ~ denote a transpose, a column

vector, and a row vector, respectively, and { HX }e, { HY },,
and {Hz }, are magnetic-field vectors corresponding to the
nodal points within each element.

Application of the standard finite-element technique to

(1) gives the following global matrix equation [9]-[16]:

[s]{ H}-k;[T]{H}= {o} (6)

where the matrices [S] and [T] are related to the first and

the second terms on the left-hand side of (l), respectively

[9]-[16], and the nodal magnetic-field vector{ H } is forced

to satisfy the boundary conditions on r [11], [16].

The solutions of (6) are known to include many spurious

solutions [9] –[16] which do not satisfy the divergence

relation (2).

Using the Galerkin procedure on (2), we obtain

JJ{ }N Hz dxdy = (1/j~)
e

X~~{N}(aH.,~X+~HY,dY) dXdy. (7)
e

Equation (7) involves division by the phase constant ~.

Therefore, it may become unreliable when ~ is close to

zero. To avoid such a difficulty, the following normaliza-

tion is adopted here:

JJ{ }N Hz d:d~= (l/j)
e

xj~{N}(dHx/dX+ dHy/@L=F (8)
e

T=px, y=py. (9)

If ~ is exactly zero, another treatment is required since

{1-l, } and {Hz} are decoupled in (6). Substituting (3) into
(8) and assembling the complete matrix for the region $2by

adding the contributions of all different elements, we
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obtain

[Dz]{H, } = [QI{H,} (lo)

where

[Dz]=~JJ{N}{N}%-ay- (11)
e e

[~tl=-xJJ[{N}d{N}T/ai {N}d{N}T/’oj]
e e

did~ (12)

[1{HX}
{H,}= {H, } - (13)

Here, the components of vectors { HX }, { HY}, and {Hz}

are the values of HX, HY, and H= at nodal points in L?,

respectively.

Using (10), the nodal magnetic-field vector {H} can be

expressed as

{H}= [D]{ H,} (14)

where

[1[u]
[~1 = [~,] -l[DJ “ (15)

Here, [U] is a unit matrix.

Substituting (14) into (6) and multiplying (6) by [D]~

from the left, we obtain the following final matrix equa-

tions with the transverse magnetic-field component {H, }:

[i,]{ Ht}-(~o/B)2[~,]{H,}= {0} (16)

where

Equation (16) is

[&] = [D]T[S][D] (17)

[Z,] = [D]~[T][D]. (18)

an ordinary matrix eigenvalue problem

whose eigenvalue and eigenvector are (kO/D)’ and {H,},

respectively; therefore, one can easily manage with the

help of a computer. Note that in (16) the divergence

relation v. H = O is implicitly included and the matrix size

solved is reduced to two-thirds that of the penalty function

approach [11]–[13], [15]–[17].

IV. NUMERICAL EXAMPLES

In this section, we present the computed results ob-

tained by (16). In numerical computations, double preci-

sion is adopted to avoid roundoff errors. The matrix size

solved is 2NP and Householder’s method is used as an

eigenvalue solution method, where NP is the number of

nodal points.

A. Dielectric-Loaded Rectangular Waveguide

Fig. 1 shows the relative error e of the computed ,kO for

the LSMII mode in a rectangular metallic waveguide half

filled with dielectric of relative permittivity 1.5. The rela-

tive error e is given by

e= {(kO– EO)/EO} X1 OO[%] (19)
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Fig. 1. Convergence of eigenvalues for a dielectric-loaded rectangular
metallic waveguide.

TABLE I
COMPANSON WITFI THSPENALTYFUNCTION MSTHOD

k. W

No. Present method Penalty function method (p = 1)

1

2

3

4

5

6

7

8

9

10

8.8093

9.3896

10.2752

11.1038

11.2677

11.4501

11.9882

12.6686

12.8092

12.9575

8.8095

9.3882

10.2765

10.4819 (S)

10.9431 (s)

11.1058

11.2736

11.4644

12.0014

12.2266 (S)

S = spurious solutions. ~W = 10.

where k. and ~. are the computed and exact values [24],

respectively.

For the LSMII mode, the ranges O <@V< 5.42 and

5.42< ~W correspond to the fast-wave region (O < P/k. <
1) and the slow-wave region (1< /?/ko), respectively. It is

readily seen from Fig. 1 that the relative error e monotoni-

cally decreases as the number of elements NE increases. It

is also found that for both the fast- and the slow-wave

regions, the solution is always an upper bound. We con-

firm numerically that spurious solutions do not appear in

either region.

Table I exhibits a list of the first ten eigenvalues ob-

tained by the present method and compares them with

those obtained by the penalty function method [11]. Here,

~W’= 10, p is the penalty coefficient [13], [15], and the

plane of symmetry is assumed to be a perfect magnetic

conductor. Four divisions, (NE, NP) = (4, 15), (16, 45),

(36, 91), and (64, 153), are chosen in the numerical compu-

tations, and storage requirements are 6, 500, 2000, and

‘mD
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Fig. 2. Element division profile for a dielectric rectangular waveguide
and second-order triangular elements.
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Fig. 3. Dispersion characteristics of an isotropic dielectric rectangular
waveguide.

5700 kB, respectively. It is found from Table I that in the

present method spurious solutions do not appear in either

the fast- or the slow-wave region, while they do appear in

the fast-wave region in the penalty function method. Also,

it is interesting to note that the present method is better in

accuracy than the penalty function method except for the

second eigenvalue.

B. Dielectric Rectangular Waveguide

We subdivide only one-quarter of the cross section of a

dielectric rectangular waveguide into second-order triangu-

lar elements (NE = 48, NP = 117) as shown in Fig. 2, where

W and t are the width and the thickness of a rectangular

core, respectively, boundaries CD and DA are assumed to

be perfect electric conductors, and the conditions on

boundaries AB and BC are suitably imposed depending

on the kind of modes [11], [16]. The storage requirement is

3300 kB in the above division.
Fig. 3 shows the dispersion characteristics for the E~~

and EJ~ modes [25] of an isotropic dielectric rectangular

waveguide surrounded by a medium with a refractive

index 1.0; the refractive index of the core is 1.5, v =

kot~~/~, and b = {(~/kO)2 – n~}/(n~ – n;). Our

results agree well with the results of the collocation method

[25]. Goell’s solution in Fig. 3 corresponds to the open

structure and, consequently, shows no cutoff frequency, in

contrast to the finite-element solution within a conducting

box. The spurious solutions do not appear in the present

analysis. In addition, it has already been confirmed that

many spurious solutions are included in the solutions of

(6) [11] -[13], [15]-[17].
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Fig. 4. Dispersion characteristics of an anisotropic dielectric rectangu-
lar waveguide.

Fig. 4 shows the dispersion characteristics for the E:q

and E;q modes of an anisotropic dielectric rectangular

waveguide surrounded by an isotropic medium with a

refractive index of ~; the ordinary and extraordinary

refractive indexes of the core are ~ and n, respec-

tively. Our results agree well with the results of the varia-

tional method [26]. Also, in this anisotropic case, the

spurious solutions do not appear at all.

V. CONCLUSIONS

An improved finite-element method for the analysis of

dielectric waveguiding problems has been formulated using

the transverse magnetic-field component. In this approach,

the divergence relation v. H = O is satisfied and the spuri-

ous solutions are perfectly eliminated in the entire region

of a propagation diagram. Furthermore, any artificial

parameters that have been included in the three-compo-

nent magnetic- and/or electric-field formulations are not

included, and the matrix size solved is reduced to two-thirds

the size of these formulations. Although we have used the

magnetic field here, one can also use the electric field by

imposing the appropriate conditions [17], [19] on the

boundaries of neighboring elements.

Unlike the previous formulations using transverse field

components developed for use in the method of moments

[27] and the finite-difference method [28], this approach is

readily applicable to anisotropic waveguides having a per-

mittivity tensor with nonzero off-diagonal elements and to

waveguides containing lossy and/or active materials. This

is because the perrnittivity tensor [K J considered here is

arbitrary except that it is assumed there are no losses and

our formulation is based on a Galerkin procedure. Ap-

plication of this technique to these other cases is to be

made in the near future.
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