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Abstract — An improved finite-element method for the analysis of dielec-
tric waveguiding problems is formulated using the transverse magnetic-field
component. In this approach, the divergence relation v - H = 0 is satisfied
and the spurious, nonphysical solutions which have been necessarily in-
cluded in the solutions of earlier vectorial finite-element methods are
completely eliminated in the whole region of a propagation diagram. To
verify the accuracy of the present method, numerical results for a rectangu-
lar metallic waveguide half filled with dielectric are presented and com-
pared with exact and earlier finite-element solutions. Dielectric rectangular
waveguides are also analyzed for both isotropic and anisotropic cases.

I. INTRODUCTION

EVERAL METHODS for the analysis of three-

dimensional dielectric waveguides have been pro-
posed, and the vectorial finite-element method in an
axial-component (E,-H,) formulation [1]-[7] or in a
three-component (magnetic field H or electric field E)
formulation [8]-[10], which enables one to compute accu-
rately the mode spectrum of a waveguide with an arbitrary
cross section, is widely used. The most serious difficulty in
applying the finite-element method to three-dimensional
inhomogeneous dielectric waveguides is the appearance of
spurious, nonphysical solutions [1]-[10]. To overcome this
difficulty, approaches have recently been developed using
all three components of the magnetic or electric field
[11]-[17]. Among them, the penalty function method
[11]-[13], [15]-{17] has been extensively studied and ap-
plied to various types of dielectric waveguides [18]-{23] in
which the divergence-free constraint V-H=0or v-D =0
is satisfied in the least-square sense and the spurious
solutions can be suppressed from the guided- or slow-wave
region [15]-[17]. However, in this approach an arbitrary
positive constant, called the penalty coefficient, is in-
cluded, and the accuracy of solutions depends on its
magnitude [13], [23]. Furthermore, unless one suitably
selects the value of the constant, the spurious solutions
also appear in the guided region [13], [15], [17]. On the
other hand, Hano [14] has developed another vectorial
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finite-element method in terms of all three components of
the electric and/or magnetic fields. In this procedure,
spurious solutions do not appear, but needless zero eigen-
values are produced.

In this paper, a new finite-element method for the
analysis of dielectric waveguide problems is developed in
terms of the transverse magnetic-field component. In this
approach, the relation v-H =0 is satisfied and the spuri-
ous solutions are completely eliminated in the whole re-
gion of a propagation diagram. Furthermore, any artificial
parameters such as the penalty coefficient that have been
included in the three-component magnetic-field formula-
tions [13], [15], [17] are not included, and the matrix is
reduced to two-thirds the size of these formulations. To
verify the accuracy of the method, numerical results for a
rectangular metallic waveguide half filled with dielectric
are presented and compared with exact [24] and earlier
finite-element solutions [11]. Dielectric rectangular wave-
guides are also analyzed for both isotropic and anisotropic
cases and the results obtained are compared with previ-
ously published results {25], [26].

II. FUNDAMENTAL EQUATIONS

We consider a three-dimensional dielectric waveguide
with an arbitrary cross section £ in the xy-plane and
assume that I', the boundary of the region , consists
partly of a perfect electric conductor and partly of a
perfect magnetic conductor., With a time dependence of
the form exp(jwt) being implied, from Maxwell’s equa-
tions the following vectorial wave equation is derived:

vX([K]''VxH)-kiH=0 (1)

where k is the free-space wavenumber and [K] is the
relative permittivity tensor.
The divergence-free constraint v+ H = 0 can be written

H,=(1/jB)(8H,/dx+ dH,/dy) (2)

where 8 is the phase constant in the z-direction, assuming
no losses.
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III. FINITE-ELEMENT FORMULATION

Dividing the cross section @ of the guide into a number
of second-order triangular elements, the magnetic fields
within each element are defined in terms of the magnetic
fields at the corner and midside nodal points

H=[N]"{H} exp(- jBz) (3)
where
(v} {0} {0}
[N]=]| {0} (N} {0} 4)
L {0} {0} J{N}
and ‘
{H.}.
{H).=|{H)},| (5)
| {H.},

Here, {N} is the shape function vector, {0} is a null
vector, T, {-}, and {-}” denote a transpose, a column
vector, and a row vector, respectively, and { H, },, { H,}.,
and { H,}, are magnetic-field vectors corresponding to the
nodal points within each element.

Application of the standard finite-element technique to
(1) gives the following global matrix equation [9]-[16]:

[SH{H}-KTI{H} = {0} (6)
where the matrices [S] and [T] are related to the first and
the second terms on the left-hand side of (1), respectively
[9]1-[16], and the nodal magnetic-field vector { H } is forced
to satisfy the boundary conditions on I' [11], [16].

The solutions of (6) are known to include many spurious
solutions [9]-[16] which do not satisfy the divergence
relation (2).

Using the Galerkin procedure on (2), we obtain

J[{N) B, axdy=(1/i8)

X ff{N}(aHx/f)x +3H, /3y) dxdy. (7)

Equation (7) involves division by the phase constant f.
Therefore, it may become unreliable when B is close to
zero. To avoid such a difficulty, the following normaliza-
tion is adopted here:

[Ny azar=(17))

x/f{N}(aHx/ax“+ 3H,/97) d<dy (8)
x (9)

If B is exactly zero, another treatment is required since
{H,} and { H,} are decoupled in (6). Substituting (3) into
(8) and assembling the complete matrix for the region £ by
adding the contributions of all different elements, we

X=Bx, y=PBy.
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obtain
(D.](H.} = [D](#,} (10)

where
(D= [[(N}(N)" a5a7 (1)

[2)=-X [[[(¥ya(n)Trax (N}a(N}'/05]
dxdy  (12)

_[m)
HY=| () | (13)

Here, the components of vectors {H, }, {H,}, and { H, }
are the values of H,, H, and H, at nodal points in {,
respectively.

Using (10), the nodal magnetic-field vector { H} can be
expressed as

{H}=[D]{H,} (14)
where
[ wl
1= 1017101 | (1)

Here, {U] is a unit matrix.

Substituting (14) into (6) and multiplying (6) by [D]”
from the left, we obtain the following final matrix equa-
tions with the transverse magnetic-field component { H,}:

[‘S:;t]{Ht}_(ko/:B)z[ftt]{Ht} = {O} (16)

where
[$.]=[D]"[S][D] (17)
[7.] =[P [T][D]. (18)

Equation (16) is an ordinary matrix eigenvalue problem
whose eigenvalue and eigenvector are (k,/B)* and { H,},
respectively; therefore, one can easily manage with the
help of a computer. Note that in (16) the divergence
relation vV - H = 0 is implicitly included and the matrix size
solved is reduced to two-thirds that of the penalty function
approach [11]-[13], [15]-{17].

IV. NUMERICAL EXAMPLES

In this section, we present the computed results ob-
tained by (16). In numerical computations, double preci-
sion is adopted to avoid roundoff errors. The matrix size
solved is 2N, and Householder’s method is used as an
eigenvalue solution method, where N, is the number of
nodal points.

A. Dielectric-Loaded Rectangular Waveguide

Fig. 1 shows the relative error e of the computed &, for
the LSM,, mode in a rectangular metallic waveguide half
filled with dielectric of relative permittivity 1.5. The rela-
tive error e is given by

e={(ko—ky)/ko} x100[%] (19)
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Fig. 1. Convergence of eigenvalues for a dielectric-loaded rectangular
metallic waveguide.
TABLE I
COMPARISON WITH THE PENALTY FUNCTION METHOD
ko ¥
No Present method Penalt}' function method (p = 1)
1 8.8093 8.8095
2 9.3896 9.3882
3 10.2752 ' 10.2765
4 11.1038 10.4819 (S)
5 11.2677 10.9431 (S)
6 11.4501 11.1058
7 11.9882 11.2736
8 12,6686 11.4644
9 12.8092 12.0014
10 12.9575 12.2266 (S)

S = spurious solutions. W =10.

where k, and k, are the computed and exact values [24],
respectively.

For the LSM;; mode, the ranges 0 < SW <542 and
5.42 < BW correspond to the fast-wave region (0 < 8/k, <
1) and the slow-wave region (1< B/k,), respectively. It is
readily seen from Fig. 1 that the relative error ¢ monotoni-
cally decreases as the number of elements N increases. It
is also found that for both the fast- and the slow-wave
regions, the solution is always an upper bound. We con-
firm numerically that spurious solutions do not appear in
either region. ’

Table I exhibits a list of the first ten eigenvalues ob-
tained by the present method and compares them with
those obtained by the penalty function method [11]. Here,
BW =10, p is the penalty coefficient [13], [15], and the
plane of symmetry is assumed to be a perfect magnetic
conductor. Four divisions, (Ng, Np) = (4,15), (16,45),
(36,91), and (64,153), are chosen in the numerical compu-
tations, and storage requirements are 6, 500, 2000, and
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Fig. 2. Element division profile for a dielectric rectangular waveguide
and second-order triangular elements.
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Fig. 3. Dispersion characteristics of an isotropic dielectric rectangular
waveguide.

5700 kB, respectively. It is found from Table I that in the
present method spurious solutions do not appear in either
the fast- or the slow-wave region, while they do appear in
the fast-wave region in the penalty function method. Also,
it is interesting to note that the present method is better in
accuracy than the penalty function method except for the
second eigenvalue.

B. Dielectric Rectangular Waveguide

We subdivide only one-quarter of the cross section of a
dielectric rectangular waveguide into second-order triangu-
lar elements (N = 48, N, =117) as shown in Fig. 2, where
W and t are the width and the thickness of a rectangular
core, respectively, boundaries CD and DA are assumed to
be perfect electric conductors, and the conditions on
boundaries 4B and BC are suitably imposed depending
on the kind of modes [11], {16]. The storage requirement is
3300 kB in the above division.

Fig. 3 shows the dispersion characteristics for the E,
and E}, modes [25] of an isotropic dielectric rectangular
waveguide surrounded by a medium with a refractive
index 1.0; the refractive index of the core is 1.5, v="-
kotfn?—n3 /m, and b= {(B/ko)* —n3}/(n}—n3). Our
results agree well with the results of the collocation method
[25]. Goell’s solution in Fig, 3 corresponds to the open
structure and, consequently, shows no cutoff frequency, in
contrast to the finite-element solution within a conducting
box. The spurious solutions do not appear in the present
analysis. In addition, it has already been confirmed that
many spurious solutions are included in the solutions of
(6) [11]-{13], [15]-{17].
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Fig. 4. Dispersion characteristics of an anisotropic dielectric rectangu-
lar waveguide.

Fig. 4 shows the dispersion characteristics for the E,
and EJ, modes of an anisotropic dielectric rectangular
waveguide surrounded by an isotropic medium with a
refractive index of v2.05 ; the ordinary and extraordinary
refractive indexes of the core are y2.31 and y2.19, respec-
tively. Our results agree well with the results of the varia-
tional method [26]. Also, in this anisotropic case, the
spurious solutions do not appear at all.

V. CONCLUSIONS

An improved finite-element method for the analysis of
dielectric waveguiding problems has been formulated using
the transverse magnetic-field component. In this approach,
the divergence relation v-H = 0 is satisfied and the spuri-
ous solutions are perfectly eliminated in the entire region
of a propagation diagram. Furthermore, any artificial
parameters that have been included in the three-compo-
nent magnetic- and/or electric-field formulations are not
included, and the matrix size solved is reduced to two-thirds
the size of these formulations. Although we have used the
magnetic field here, one can also use the electric field by
imposing the appropriate conditions {17], [19] on the
boundaries of neighboring elements.

Unlike the previous formulations using transverse field
components developed for use in the method of moments
[27] and the finite-difference method [28], this approach is
readily applicable to anisotropic waveguides having a per-
mittivity tensor with nonzero off-diagonal elements and to
waveguides containing lossy and /or active materials. This
is because the permittivity tensor [ K] considered here is
arbitrary except that it is assumed there are no losses and
our formulation is based on a Galerkin procedure. Ap-
plication of this technique to these other cases is to be
made in the near future.
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